Tuesday, 16 July 2013

ADVANTAGES OF USING COMPUTER

This is a loaded question with many potentially right answers. The potential advantages for using a computer depend closely on the intended use. Given a few potential uses, here are some of my thoughts: 
For writing:
  • Quick entry
  • Easy to edit and restructure
  • Many tools to produce various kinds of output (html, text, books, pdf documents, etc.)
  • Storage is inexpensive and doesn't take up much space
  • Easy to search/navigate through documents

For organization
  • Many different kinds of tools from Palm software to Franklin Covey, to GTD based on David Allen's system, to flat text files ala todo.txt (http://www.todotxt.com) by Gina Trapani.
  • Once a document is in electronic form it is easy to store and many, many documents can be stored on one computer in much less space than in a file cabinet.
  • Easy to search

For programming
  • Most programming requires the use of computers
  • There are many, many tools available to programmers such as:
    • Editors: CodeWrite, SlickEdit, VIM, EMACS, Notepad, BBEdit...
    • Compilers: MSVC, Sun javac, GNU Compiler Collection (java, fortran, C, C++, and more), Intel C Compiler...
    • Assemblers: NASM, MASM, TASM...
    • Interpreters: Ruby, Python, Lisp, Perl, bash, and countless others
    • GUI Builders: Glade, QT Designer, MSVC, ...
    • Code browsers (many use output from etags or ctags, MS has their own)
    • Simulators, Emulators
  • Using a computer makes it easy to search code and tools make it easier to understand it
  • Easily gather programs from other creators
  • Easily distribute your own works

For research
  • Access to the Internet has become invaluable as a research tool
  • Easily gather huge amounts of information and store/catalog it
  • Easily search for new information or search the information already acquired
  • Interact with other researchers to create/gather more research
  • Almost instant access to many remote or obscure locations of the globe and their researchers/experiences/knowledge
  • Easily disseminate results of your own research

COMPUTER COMPONENTS

Computer Components:

Computers are made of the following basic components:
  1. Case with hardware inside:

    1. Power Supply - The power supply comes with the case, but this component is mentioned separately since there are various types of power supplies. The one you should get depends on the requirements of your system. This will be discussed in more detail later
    2. Motherboard - This is where the core components of your computer reside which are listed below. Also the support cards for video, sound, networking and more are mounted into this board.

      1. Microprocessor - This is the brain of your computer. It performs commands and instructions and controls the operation of the computer.
      2. Memory - The RAM in your system is mounted on the motherboard. This is memory that must be powered on to retain its contents.
      3. Drive controllers - The drive controllers control the interface of your system to your hard drives. The controllers let your hard drives work by controlling their operation. On most systems, they are included on the motherboard, however you may add additional controllers for faster or other types of drives.
    3. Hard disk drive(s) - This is where your files are permanently stored on your computer. Also, normally, your operating system is installed here.
    4. CD-ROM drive(s) - This is normally a read only drive where files are permanently stored. There are now read/write CD-ROM drives that use special software to allow users to read from and write to these drives.
    5. Floppy drive(s) - A floppy is a small disk storage device that today typically has about 1.4 Megabytes of memory capacity.
    6. Other possible file storage devices include DVD devices, Tape backup devices, and some others.
  2. Monitor - This device which operates like a TV set lets the user see how the computer is responding to their commands.
  3. Keyboard - This is where the user enters text commands into the computer.
  4. Mouse - A point and click interface for entering commands which works well in graphical environments                       
  5.         .           

COMPUTER HISTORY AND ITS GENERATIONS

The history of computer development is often referred to in reference to the different generations of computing devices. Each of the five generations of computers is characterized by a major technological development that fundamentally changed the way computers operate.

The history of computer development is often referred to in reference to the different generations of computing devices. Each of the five generations of computers is characterized by a major technological development that fundamentally changed the way computers operate, resulting in increasingly smaller, cheaper, more powerful and more efficient and reliable computing devices.
In this Webopedia reference article you'll learn about each of the five generations of computers and the technology developments that have led to the current devices that we use today. Our journey starts in 1940 with vacuum tube circuitry and goes to the present day -- and beyond --  with artificial intelligence.

First Generation (1940-1956) Vacuum Tubes

The first computers used vacuum tubes for circuitry and magnetic drums for memory, and were often enormous, taking up entire rooms. They were very expensive to operate and in addition to using a great deal of electricity, generated a lot of heat, which was often the cause of malfunctions.
First generation computers relied on machine language, the lowest-level programming language understood by computers, to perform operations, and they could only solve one problem at a time. Input was based on punched cards and paper tape, and output was displayed on printouts.
The UNIVAC and ENIAC computers are examples of first-generation computing devices. The UNIVAC was the first commercial computer delivered to a business client, the U.S. Census Bureau in 1951.
A UNIVAC computer at the Census Bureau
A UNIVAC computer at the Census Bureau.
Image Source: United States Census Bureau

Second Generation (1956-1963) Transistors

Transistors replaced vacuum tubes and ushered in the second generation of computers. The transistor was invented in 1947 but did not see widespread use in computers until the late 1950s. The transistor was far superior to the vacuum tube, allowing computers to become smaller, faster, cheaper, more energy-efficient and more reliable than their first-generation predecessors. Though the transistor still generated a great deal of heat that subjected the computer to damage, it was a vast improvement over the vacuum tube. Second-generation computers still relied on punched cards for input and printouts for output.
Second-generation computers moved from cryptic binary machine language to symbolic, or assembly, languages, which allowed programmers to specify instructions in words. High-level programming languages were also being developed at this time, such as early versions of COBOL and FORTRAN. These were also the first computers that stored their instructions in their memory, which moved from a magnetic drum to magnetic core technology.
The first computers of this generation were developed for the atomic energy industry.

Third Generation (1964-1971) Integrated Circuits

The development of the integrated circuit was the hallmark of the third generation of computers. Transistors were miniaturized and placed on silicon chips, called semiconductors, which drastically increased the speed and efficiency of computers.
Instead of punched cards and printouts, users interacted with third generation computers through keyboards and monitorsand interfaced with an operating system, which allowed the device to run many different applications at one time with a central program that monitored the memory. Computers for the first time became accessible to a mass audience because they were smaller and cheaper than their predecessors.

Fourth Generation (1971-Present) Microprocessors

The microprocessor brought the fourth generation of computers, as thousands of integrated circuits were built onto a single silicon chip. What in the first generation filled an entire room could now fit in the palm of the hand. The Intel 4004 chip, developed in 1971, located all the components of the computer—from the central processing unit and memory to input/output controls—on a single chip.
In 1981 IBM introduced its first computer for the home user, and in 1984 Apple introduced the Macintosh. Microprocessors also moved out of the realm of desktop computers and into many areas of life as more and more everyday products began to use microprocessors.
As these small computers became more powerful, they could be linked together to form networks, which eventually led to the development of the Internet. Fourth generation computers also saw the development of GUIs, the mouse and handhelddevices.

Fifth Generation (Present and Beyond) Artificial Intelligence

Fifth generation computing devices, based on artificial intelligence, are still in development, though there are some applications, such as voice recognition, that are being used today. The use of parallel processing and superconductors is helping to make artificial intelligence a reality. Quantum computation and molecular and nanotechnology will radically change the face of computers in years to come. The goal of fifth-generation computing is to develop devices that respond to natural language input and are capable of learning and self-organization.

DID YOU KNOW...?

An integrated circuit (IC) is a small electronic device made out of a semiconductor material. The first integrated circuit was developed in the 1950s by Jack Kilby of Texas Instruments and Robert Noyce of Fairchild Semiconductor.